minimize the dam safety risks that currently exist at the Project site. FERC must explain the risks and hazards associated with the Project in easily understood language.

B. Climate Change

Pursuant to CEQ guidance18, FERC must consider the effects of climate change as they relate to the proposed relicensing. These will include potential and probable changes in precipitation, hydrology, stream flows, and potential water yield, as well as potential effects on energy production and fisheries. FERC cannot adequately consider the potential effects, including cumulative effects, of the proposed fifty-year license renewal without carefully reviewing projected changes in environmental conditions in the project region which are certain to affect project operations and public trust resources.19

Furthermore, a new study in BioScience Volume 66 Number 11 brings new information to light about greenhouse gas emissions from reservoir water surfaces, concluding that methane accounts for 79 percent of carbon dioxide equivalent emissions from reservoirs, and those reservoir emissions may have been underestimated.20 Hydropower is considered a low-carbon technology, however this new study suggests that some reservoirs in certain conditions can release quantities of methane, a greenhouse gas, and/or act as carbon sinks. FERC should therefore also consider whether the Eel River dam reservoirs should be evaluated as a source of elevated methane emissions.

V. The DEIS Must Analyze an Adequate Range of Alternatives to the Project, Including a Decommissioning Alternative.

NEPA requires that an agency “rigorously explore and objectively evaluate all reasonable alternatives.” 40 C.F.R. § 1502.14(a). Consideration of alternatives is “the heart” of an EIS because it compels agencies to “present the environmental impacts of the proposal and the alternatives in comparative form, thus sharply defining the issues and providing a clear basis for choice among options by the decisionmaker and the public.” Id.; see also 40 C.F.R. § 1508.9(b).

Fundamentally, an agency must “to the fullest extent possible . . . consider alternatives to its action which would reduce environmental damage.” Calvert Cliffs’ Coordinating Comm., Inc. v. U.S. Atomic Energy Comm’n (D.C. Cir. 1971) 449 F.2d 1109, 1128.

Thus far, SD1 only mentions two “alternatives:” the “No–Action Alternative” and PG&E’s Proposal. The No-Action Alternative is continuation of existing license terms. PG&E’s proposal, for now, is also continuation of existing license conditions, although PG&E recognizes that it may include additional PM&E measures during the proceeding. SD1 states that staff propose to eliminate several options from detailed study, including Federal Government Takeover, Non-Power License, and Project Decommissioning. SD1’s approach to the alternatives analysis is far too narrow for this Project.

As discussed above, there are several elements of the RPA that are not working as intended. For example, PG&E has had to repeatedly request variances to the flow regime due to the drought and structural conditions. And the pikeminnow suppression program has been effectively abandoned. Furthermore, conditions in the area continue to change as drought and climate change affect the region, and illegal diversions continue to rise. Given that NMFS stated at the time of the last license amendment that full implementation of the RPA was necessary to avoid an unlawful taking of endangered species under the ESA, continuation of the status quo will not meet the requirements of the ESA. Therefore, the EIS should evaluate additional alternatives beyond the status quo. Each alternative should provide a flow regime and/or other project components that ensure (1) the survival and recovery of listed Eel River fish species, and (2) to the extent that dam structures remain, that those structures are able to be safely operated
over the life of the Project.

Additional alternatives evaluated in the EIS should include, but are not limited to:

1. **Project Decommissioning and Full Facilities Removal.** This alternative should evaluate the effects of decommissioning the facility and removing all of the Project Works.

2. **CEQA “No Project” alternative.** The “No Project Alternative” under the California Environmental Quality Act (“CEQA”) is denial of the project application. Therefore it differs from the NEPA No Action Alternative, which requires evaluation of continuing the status quo, along with evaluating likely future actions. The CEQA No Project Alternative requires evaluation of the environmental effect of the state agency denying the requested discretionary action. As discussed below, given that the State Water Resources Control Board (“State Board”) will need to comply with CEQA if it determines to issue the necessary 401 certification for the Project, it would better serve to inform the public and decision-makers if this information was included within the EIS and compared with the other NEPA alternatives.

3. **Non-Power License.** This alternative would evaluate the effects of a government agency securing a temporary license in order to retain certain project facilities (i.e., diversion works) but removing power generation and other facilities. We recommend that the alternative include the minimum facilities necessary for water diversion, including potential alternative means of diversion.

4. **Partial Facilities Removal.** This set of alternatives should evaluate a range of partial facilities removal, including removal of Scott Dam and partial removal or lowering of Scott Dam to facilitate fish passage and water quality, as well as facilities modifications at Cape Horn to improve fish passage and water quality.

Given the environmental setting discussed above, all of the above alternatives are reasonable and should be given further consideration. Yet, in SD1, FERC cursorily eliminates both the Non-Power License and Project Decommissioning as alternatives for review. For
example, in dismissing a project decommissioning alternative, SD1 states:

The project provides a viable, safe, and clean renewable source of power and consumptive water to the region. With decommissioning, the project would no longer be authorized to generate power.

No party has suggested project decommissioning would be appropriate in this case, and we have no basis for recommending it. Thus, we do not consider project decommissioning a reasonable alternative to relicensing the project with appropriate environmental measures.

SD 1 at p. 16 (emphasis added).

First, SD1 is factually incorrect in suggesting “no party has suggested project decommissioning would be appropriate in this case.” The opposite is true, as demonstrated by comments at the scoping meeting. For decades, federally recognized Indian Tribes and many other stakeholders have argued for project decommissioning and a free flowing river. Even FERC’s fellow federal government agencies have insisted that decommissioning be evaluated. See PAD vol 2 at 188. For example, NMFS’ 2002 Biological Opinion Conservation Recommendation #4 stated:

FERC should study the feasibility and develop a schedule for decommissioning and removing the Potter Valley Project in order to restore unimpaired flows and restore access to historical salmonid spawning and rearing habitats to aid in the recovery of listed salmonids in the Eel Basin.

Further, numerous concerned members of the public have already commented at the Scoping Meetings and in writing on SD1 and have requested consideration of a decommissioning alternative. FERC should heed these requests.

Equally critical, FERC is wrong to suggest there is “no basis for recommending [decommissioning].” In fact, FERC has, in consultation with other federal agencies charged with implementing NEPA, adopted guidelines that specifically address when a detailed analysis of decommissioning is warranted. See FERC, *Preparing Environmental Documents* (2008), https://www.ferc.gov/industries/hydropower/gen-info/guidelines/eaguide.pdf (“FERC
Guidelines”) at p. 35. The FERC Guidelines set forth a minimum of 17 factors for the agency to consider in determining whether to analyze a decommissioning alternative. SD1 gives absolutely no indication that FERC has considered these factors. If the agency were to properly consider these factors, it would be clear that the EIS should fully evaluate a decommissioning alternative.

To determine when to include project decommission in its analysis, FERC should consider the beneficial or adverse effects of the project on a variety of resources, including but not limited to:

- (1) listed threatened or endangered species;
- (2) economic viability of the project, including costs of resource protection measures;
- (3) whether the river is targeted for fish recovery;
- (4) feasibility of fish passage;
- (5) consistency with comprehensive plan(s);
- (6) protected river status (e.g., scenic river, wilderness area);
- (7) effectiveness of past mitigation measures and availability of future measures;
- (8) support by applicant or other party for project retirement;
- (9) Tribal lands, resources, or interests;
- (10) water quality issues, including presence of toxic sediments;
- (11) potential opportunities for recreation;
- (12) physical condition of project;
- (13) presence of existing project-dependent development (e.g., houses abutting reservoir);
- (14) other non-power project-related benefits (e.g., municipal water supply, flood control, irrigation);
- (15) project-dependent resource values (e.g., recreation, wetlands, wildlife, habitat);
- (16) need for power and ancillary services; and
- (17) historic properties.

FERC Guidelines, supra, at p. 35.

These factors also appear relevant as to whether FERC should consider the additional alternatives mentioned above, including denial of the project license (the CEQA “No Project” Alternative), a non-power license, and partial facilities removal. As set forth below, nearly every one of these factors weighs heavily in favor of including a decommissioning alternative as well as the other alternatives mentioned above:
(1) Listed threatened or endangered species

As discussed above, the Eel is home to three listed runs of salmonid.21 Coho salmon are listed as Threatened under both the California and federal Endangered Species Acts. Eel River chinook are listed as threatened under the federal ESA. Eel River steelhead are listed as a single ESU, with Threatened status, under the federal ESA. In reality, summer steelhead are genetically distinct in critically important ways from winter steelhead, and the surviving populations of summer steelhead in the Eel River must be judged critically endangered. See supra Part II.A.

The detrimental and continuing impacts of the Project and its operations on chinook salmon and steelhead have been the focus of continuing efforts for decades. FERC should be well informed of the presence of threatened and endangered fisheries in the upper mainstem Eel River, and of the impacts of Project operations on those species. See supra Part II.A.

There is reason to believe that dam removal would substantially benefit chinook and steelhead. Summer steelhead would benefit particularly from renewed access to the upper-basin spawning habitats in which they specialize. See supra Part II.A. While dam removal may cause transient impacts to salmon and steelhead, those impacts may be largely mitigated, and could in any case be completely outweighed by the benefits to the fisheries of dam removal. Although the state of the record is not currently sufficient to resolve these issues, it is precisely the role of the NEPA document to provide analyses of these and similar questions.

(2) Economic viability of a project, including costs of resource protection measures

Stakeholders do not know whether the Project even covers its maintenance and liability costs given its irregular and limited power production. Given that energy production fell much more steeply than water transfers during the current license period, additional reductions in water transfers which may be required to protect fisheries are likely to result in even more dramatic reductions in power production.

21 In addition, the project area hosts at least one listed amphibian – the foothill yellow legged frog – and the Threatened Northern Spotted Owl.
Further, operations of the Lake Pillsbury reservoir are increasingly constrained by a series of factors: increasing sediment; the need to maintain a minimum pool higher than previously anticipated; the need to maintain flood control capacity; and the need to address the ‘ecological trap’ the cold water flows create in the 12 mile reach between Scott Dam and Cape Horn Dam. As we have seen in the recent drought, these constraints cannot currently be met in very dry years.

Of course, Scott Dam makes no provision for fish passage. Providing fish passage may be technically feasible, but at 140 feet, Scott Dam presents a formidable challenge. Even if technically feasible, a fish ladder over Scott Dam may be prohibitively expensive and/or environmentally unsatisfactory.

In addition to fish passage, there are likely to be other additional costs associated with relicensing that may make continued operation even less economically attractive than it currently is. Decommissioning the project could therefore prove to be the most reasonable outcome.

(3) River targeted for fish recovery

The Eel River has been targeted for fish recovery at least since 1941, when Leo Shapavolov advocated protecting the river as a steelhead sanctuary. In more recent decades, the California Department of Fish and Wildlife issued its 2004 Coho Recovery Strategy.22 NMFS has issued Recovery Plans for coho (2014) and for steelhead and chinook (2016). All emphasize the importance of the Eel River to fisheries recovery. The NMFS Multispecies Recovery Plan (NMFS 2016) lists both the Upper Eel River CC Chinook Salmon and NC Steelhead as Essential Functionally Independent populations, within the North Mountain Interior diversity strata. These populations form the foundation of species viability, and play a key role in species

22 California Department of Fish and Wildlife. \textit{Recovery strategy for California Coho salmon: report to the California Fish and Game Commission, Species Recovery Strategy 2004-1}. California Department of Fish and Game, Native Anadromous Fish and Watershed Branch. Sacramento, CA (2004)
recovery as they must attain a low extinction risk for the populations to meet recovery criteria (be delisted).\(^2\)\(^3\) The NMFS Coho Recovery Plan (NMFS 2014) designates the entire Eel River as a single diversity stratum; this stratum must also be at low risk of extinction to meet coho salmon recovery criteria (be delisted).\(^2\)\(^4\) Removing the Eel River dams is arguably one of the most significant steps we can take toward creating the conditions for salmonid recovery and survival in the Eel River.

(4) **Feasibility of fish passage**

Scott Dam is a barrier to upstream fish passage. At 140 feet, Scott Dam is apparently close to the technical limits of a feasible fish ladder. The costs and potentially limited results have thus far prevented a fish ladder from being built.

While efforts continue to improve fish passage at Van Arsdale, particularly for lamprey, substantial barriers to fish migrations, which have existed for more than a century, remain largely unexamined and unacknowledged. And significant problems continue to arise. For example, the fish screens were apparently covered with debris – and the fish ladder thus offline – for 51 days this past winter of 2017, starting in February. It is not clear what impacts this obstruction may have had on downstream passage of steelhead, chinook, and other fish. Further, in recent years, FERC granted PG&E a variance to curtail prescribed flow releases because the Lake Pillsbury reservoir was getting dangerously low. This essentially resulted in the ceasing of the upriver migration of chinook at precisely the point that releases down the Eel were curtailed.

Finally, even if all the mechanisms of fish passage are functioning as intended, the way that the dams and diversion tunnel are constructed means that flow releases from the Lake Pillsbury reservoir, which are meant mostly for diversion to Potter Valley, render the 12 mile...
reach between the dams to some extent an ecological trap. The cold releases from Scott Dam retard the outmigration of young chinook and steelhead, dramatically reducing the utility of the inter-dam reach as a spawning and rearing ground.

Perhaps the most obvious benefit of dam removal would be restoring fish passage to the upper Eel River.

(5) Consistency with comprehensive plan(s)

Numerous comprehensive plans exist for the protection and recovery of fish species in the Eel River. Consistency with such plans may require or benefit from project decommissioning or other similar alternative. Such plans include, but are not limited to:

- NMFS’ Recovery Plans for Coho, Chinook/Steelhead
- CA Department of Fish and Wildlife Coho Recovery Strategy
- BLM Regional Plan
- Round Valley Indian Tribe Tribal Restoration Plan
- State Water Resources Control Board’s Basin Plan

The EIS should evaluate the Conservation Groups’ suggested alternatives and compare each alternative’s consistency with these plans with that of the proposed Project.

(6) Protected river status (e.g., scenic river, wilderness area)

As noted, the Eel and its principal tributaries except the upper mainstem from Cape Horn Dam up is designated as both a California and a federal Wild & Scenic River. If the dams were removed, the resource values that motivated W&SRA designation would again exist in the reaches now affected by the dams.

There is also designated Wilderness in the Project area in the Mendocino National Forest and in the upper Eel River watershed above the Project. Further, the Lake Berryessa National Monument includes lands within the Eel River watershed above the Project. These protected lands would help protect and secure landscape and fisheries restoration following dam removal;
they would also benefit from dam removal, principally by the restoration of natural processes
and native fisheries to the landscape.

(7) Effectiveness of past mitigation measures and availability of future measures
Past mitigation measures have not been as successful as anticipated, and future measures
are looking more and more difficult to secure.

The requirements imposed by the RPA in 2003 to reduce take of listed salmon and
steelhead have proved difficult and or impossible to implement. PG&E has had to repeatedly
seek flow variances. Pikeminnow reduction strategies have been abandoned, without success,
and pikeminnow continue to spread throughout the watershed.\(^{25}\) Pikeminnow predation clearly
reduces reproductive success in the interdam reach, adding to the evidence that it is often an
ecological trap. It is not clear what mitigation might effectively address the pikeminnow
invasion at this point. Nor have the RPA measures proved successful in providing for salmon
and steelhead recovery.

Climate change and diminishing reservoir capacity makes past strategies for fish flows
less certain, even unlikely of attainment in dry years – as the recent drought has shown. It is
increasingly likely that cold water pools will not be available in late summer, or early fall. This
would be particularly threatening to summer steelhead, already critically imperiled.

Dam decommissioning would be the most effective overall form of mitigation possible
for the impacts of the Project.

(8) Support by applicant or other party for decommissioning
FERC states that it need not prepare a decommissioning alternative because “(n)o party
has suggested project decommissioning would be appropriate in this case.” However, the Round
Valley Indian Tribes, the Conservation Groups, and both the NMFS and EPA have called for
FERC to consider dam decommissioning since the early 2000s. See PAD Vol 2 at 188. And thus
far, PG&E has not stated that it is opposed to studying dam decommissioning. Review of such

\(^{25}\) Josh Fuller, NMFS, pers comm June 2017.
an alternative would certainly not be prejudicial to the licensee. In fact, in recent months, PG&E has declared its intent to transfer or surrender a FERC license for projects that on their face seem more valuable to their customers than the PVP (see, e.g., the DeSabla – Centerville proceedings on Butte Creek).\(^\text{26}\) Evaluation of a decommissioning alternative could assist PG&E as well as FERC in making such a determination with respect to this Project.

(9) Tribal lands, resources, or interests

There are certainly tribal lands, resources, and interests which would be affected by dam decommissioning. We expect that the Tribes, who speak directly for those interests, will submit comments that articulate the potential impacts of dam decommissioning on their particular and specific interests, and the Conservation Groups defer to such comments. Nevertheless, we note that recovery of ecologically functional populations of Eel River fisheries is consistent with the survival of tribal peoples whose culture is interwoven with those species.

(10) Water quality issues, including presence of toxic sediments

The Eel River watershed, including the upper mainstem, is designated under §303(d) of the Clean Water Act as impaired for temperature and sediment; the Lake Pillsbury reservoir is listed for mercury as well.

Scott Dam produces cold water, which would seem to help with the need for colder flows, but this is not always the result, particularly late in drought years, when cold water is most needed.

The word ‘mercury’ does not appear in SD1. However, the PAD notes at page 5 – 101 that:

*Sampling of fish tissue taken from Lake Pillsbury fish has detected high concentrations of mercury, averaging 1.31 parts per million (ppm) in 350 millimeter (mm) largemouth bass (*Micropterus salmoides*), and the highest concentration for an individual fish (4.08 ppm)*

\(^{26}\) PG&E, Notice of Withdrawal of Application of New License, DeSabla – Centerville Project, FERC No. 803-087, February 16, 2017, FERC eLibrary no. 20170216-5038.
in a 559 mm largemouth bass) in statewide sampling (Davis et al. 2009). Consequently, Lake Pillsbury is designated as impaired for mercury on the California 303(d) list.

The levels, source, and implications of mercury and methylmercury in the upper Eel, particularly in the Lake Pillsbury reservoir, require further detailed review in the EIS. In particular the EIS should evaluate whether Project operations generate or contribute to the mercury pollution found in fish in the Lake Pillsbury reservoir. It should also evaluate the short and long-term impacts of the removal or failure of the Project dams on toxic sediments.

(11) Potential opportunities for recreation

The primary limits on recreational use of the Eel River are access and the limited season when flows suitable for many recreational uses coincide with warm air temperatures. Dam removal could be expected to create more opportunities for recreational water use below the area that is now the Lake Pillsbury reservoir because boating flows would be less attenuated in the absence of the dam. However, dam removal would also lead to the loss of recreational opportunities now associated with the existence of the reservoir. The EIS should evaluate the recreational impacts of dam decommissioning and partial or full dam removal.

(12) Physical condition of project

As discussed in detail above, the available evidence strongly suggests that Scott Dam was not constructed in a manner that would be accepted today, and that both dams continue to suffer from structural issues which can be expected to continue. Again, it is difficult for the Conservation Groups or other members of the public to comment on this aspect due to the classification of materials as CEII. We again request that FERC re-designate such materials out of CEII. However, it is clear that removal of these centuries-old structures would ultimate alleviate concerns regarding their structural integrity and prevent safety hazards akin to those that occurred at Oroville Dam.

(13) Presence of existing project-dependent development (e.g., houses abutting reservoir)

The Lake Pillsbury reservoir has some project-dependent development, including the Lake Pillsbury Resort campground and marina, various other campgrounds, and the Rice Fork
development, which are primarily summer homes. The EIS would need to evaluate the impacts on dam removal to this development in comparison to the benefits that could be gained, such as the benefits of having development in proximity to a living river, with healthy fish runs.

(14) Other non-power project-related benefits (e.g., municipal water supply, flood control, irrigation)

It is overwhelmingly clear that the principal driver of the Project is not the small and irregular amount of electrical power it produces, but the water diverted to the Russian River through the Project powerhouse. Plainly, the Potter Valley Irrigation District (PVID) depends on these diverted flows.

However, it is far from clear how much of the water diverted to the Russian from the Eel serves which specific actual needs, and how those diverted flows are associated with which established water rights. Neither SCWA nor PVID have provided evidence or facts on the record to support the contention that some 600,000 people depend on Eel River water. SCWA’s domestic water supplies are drawn primarily from the Russian River at their Raney Collectors, which are downstream of Dry Creek, where releases from Lake Sonoma’s storage enter the mainstem Russian River. Water stored at Lake Sonoma provides two years’ worth of water to meet SCWA and downstream Russian River demands. Further, SCWA’s modeling for its Fish Flows DEIR does not address “unaccounted for losses and diversions,” which means that the demands and diversions from the upper and middle reaches of the Russian River are potentially substantially overstated. See Exhibit 1 (Kamman Report).

FERC must seek real clarity from PG&E and Russian River stakeholders. To fairly and independently evaluate the benefits of the project for irrigation, municipal water supply, and so forth, the EIS should include a review of what entities have established rights to what water, and to what uses the water that is being diverted is being put. FERC must provide a full accounting of water rights relevant to the Project. As discussed above, the information thus far included in SD1 with respect to water rights appears inaccurate and incomplete.

(15) Project-dependent resource values (e.g., recreation, wetlands, wildlife, habitat)

These comments by the Conservation Groups, as well as others submitted by the resource
agencies and various individuals and groups, present a strong case that decommissioning and dam removal would benefit recreational, wetlands, wildlife, and habitat values. The EIS should evaluate such alternatives in order to provide the applicant, the public, and the Commission with the comparative information necessary to determine the environmental impacts and costs and benefits associate with each alternative and the proposed Project.

(16) Need for power and ancillary services

The Project’s relatively low generation capacity, operational constraints, and rapid changes in our electrical power supply system suggest that the kind of power the Project supplies – nonpeaking baseload – is neither in particularly short supply, nor especially valuable to the operator or to society at large. The irregularity of Project power production would appear to further diminish its utility.

FERC must ask not only what the actual cost of PVP power is, but also what it is worth. Given that PG&E could fairly cheaply replace the power production of the Project with five acres of solar panels on Ukiah rooftops, with a net gain in power production, it is far from clear that there is any meaningful need for the power and ancillary services the Project now supplies. A complete analysis of PVP operations, costs, generation, sales and distribution must be conducted to properly understand the functioning and licensing of PVP as a hydropower project. The EIS must disclose data in enough fine-grained detail to understand whether alternative sources of electricity, particularly peak-hour production, and responding to climate change, can be achieved to supply the regional grid and customers more efficiently and cheaply than by the PVP.27

(17) Historic properties

Neither Cape Horn nor Scott Dam are classified as historic properties. PAD, 5 – 283. Thus, dam removal would not impair historic properties.

27 See Rosenblum Environmental Engineering letter, with attachments, dated July 26, 2017, included within Appendix A as Study Request 2.
Summary

In sum, even a superficial consideration of the 17 factors FERC committed to considering shows that the EIS must examine decommissioning and other similar reasonable alternatives. At a bare minimum, FERC must adequately evaluate the above 17 factors before determining not to include such alternatives.

VI. FERC Should Coordinate a Joint NEPA/CEQA Analysis with the State Board.

Under section 401(a)(1) of the Clean Water Act (“CWA”) the Commission may not issue a license for a hydroelectric project unless the State Board has issued a water quality certification for the Project. In issuing such a certification, the State Board must comply with CEQA. See Pub. Res. Code § 21065(c); Cal. Code Regs., tit. 22, § 3856(f). The Conservation Groups strongly encourage the Commission to coordinate its responsibilities under NEPA with those of the State Board under CEQA regarding its processing of the required 401 certification for the Project by combining those analyses into a joint NEPA/CEQA document.

Federal regulations require agencies to cooperate “to reduce duplication between NEPA and State and local requirements,” and further provide that “such cooperation shall to the fullest extent possible include . . . joint environmental assessments.” 40 C.F.R. § 1506.2. “A joint [NEPA and CEQA] review process can avoid redundancy, improve efficiency and interagency cooperation, and be easier for applicants and citizens to navigate.” Council on Envtl. Quality & Cal. Off. of Planning & Research, NEPA and CEQA: Integrating Federal and State Environmental Reviews 1 (2014). For example, as noted above, CEQA requires a different “no project” alternative than the NEPA “no action alternative.” It would be far more efficient and conducive to public input for a joint NEPA/CEQA document to include all the relevant alternatives now and compare and contrast them, rather than for the agencies and the public to have to juggle this information in two sets of reviews.

If FERC and the State Board are unable for any reason to prepare a joint environmental review, at an absolute minimum FERC should endeavor to include information in the EIS that can be later used in the CEQA analysis, such as the required CEQA “no project” alternative. By including all the relevant environmental analysis of the Project in the initial review document,